# **Disc Springs**



Disc springs (Belleville washers) are formed springs with a center hole. Disc springs are able to withstand heavy loads within a small area. Disc springs may be used independently or in combination to achieve desired loading capacities and spring characteristics.

## 1. Usage Examples

## 1) Single usage



## 2) Stacking in parallel



Suitable for applications that require high loading capacity with small deflection.

Loading capacity increases in proportion to the number of disc springs stacked.

## 3) Stacking in series



Suitable for applications that require lower loading capacity with greater deflection. Deflection increases in proportion to the number of disc springs stacked.



Load/deflection characteristics of disc spring stacking



#### 2. Disc Spring Calculation

#### 1) Load and deflection calculations

$$\begin{split} \mathrm{P} &= \frac{4\mathrm{E}}{1-\mu^2} \cdot \frac{t^4}{\alpha \mathrm{Da}^2} \cdot \frac{f}{t} \ \left( (\frac{\mathrm{h}}{t} - \frac{f}{t}) \ (\frac{\mathrm{h}}{t} - \frac{f}{2t}) + 1 \right) \\ &= 905,\!000 \ \frac{t^4}{\alpha \mathrm{Da}^2} \cdot \frac{f}{t} \ \left( (\frac{\mathrm{h}}{t} - \frac{f}{t}) \ (\frac{\mathrm{h}}{t} - \frac{f}{2t}) + 1 \right) \mathrm{N} \end{split} \qquad \begin{array}{l} \mathrm{E} : \mathrm{Young's} \ \mathrm{modulus} \\ \mu : \mathrm{Poisson's} \ \mathrm{ratio} \\ 4\mathrm{E}/1-\mu^2 : \\ f : \mathrm{Deflection} \\ \alpha : \mathrm{Calculation} \ \mathrm{coeffiction} \\ \alpha : \mathrm{Calculation} \ \mathrm{coeffiction} \\ \alpha : \mathrm{Da/Di} \\ \end{array}$$

206,000 N/mm<sup>2</sup>

 $\mu$ : Poisson's ratio 0.3  $4E/1-\mu^2$ : 905,000 N/mm<sup>2</sup>

f: Deflection

 $\alpha$  : Calculation coefficient of the diameter ratio Da/Di

δ: Da/Di